Post-nonlinear Independent Component Analysis by Variational Bayesian Learning

نویسندگان

  • Alexander Ilin
  • Antti Honkela
چکیده

Post-nonlinear (PNL) independent component analysis (ICA) is a generalisation of ICA where the observations are assumed to have been generated from independent sources by linear mixing followed by component-wise scalar nonlinearities. Most previous PNL ICA algorithms require the post-nonlinearities to be invertible functions. In this paper, we present a variational Bayesian approach to PNL ICA that also works for non-invertible post-nonlinearities. The method is based on a generative model with multi-layer perceptron (MLP) networks to model the post-nonlinearities. Preliminary results with a difficult artificial example are encouraging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind separation of nonlinear mixtures by variational Bayesian learning

Blind separation of sources from nonlinear mixtures is a challenging and often ill-posed problem. We present three methods for solving this problem: an improved nonlinear factor analysis (NFA) method using a multilayer perceptron (MLP) network to model the nonlinearity, a hierarchical NFA (HNFA) method suitable for larger problems and a post-nonlinear NFA (PNFA) method for more restricted post-...

متن کامل

Advanced source separation methods with applications to spatio-temporal datasets

Latent variable models are useful tools for statistical data analysis in many applications. Examples of popular models include factor analysis, state-space models and independent component analysis. These types of models can be used for solving the source separation problem in which the latent variables should have a meaningful interpretation and represent the actual sources generating data. So...

متن کامل

Unsupervised Variational Bayesian Learning of Nonlinear Models

In this paper we present a framework for using multi-layer perceptron (MLP) networks in nonlinear generative models trained by variational Bayesian learning. The nonlinearity is handled by linearizing it using a Gauss–Hermite quadrature at the hidden neurons. This yields an accurate approximation for cases of large posterior variance. The method can be used to derive nonlinear counterparts for ...

متن کامل

Advances in Variational Bayesian Nonlinear Blind Source Separation

Linear data analysis methods such as factor analysis (FA), independent component analysis (ICA) and blind source separation (BSS) as well as state-space models such as the Kalman filter model are used in a wide range of applications. In many of these, linearity is just a convenient approximation while the underlying effect is nonlinear. It would therefore be more appropriate to use nonlinear me...

متن کامل

Nonlinear Independent Factor Analysis by Hierarchical Models

The building blocks introduced earlier by us in [1] are used for constructing a hierarchical nonlinear model for nonlinear factor analysis. We call the resulting method hierarchical nonlinear factor analysis (HNFA). The variational Bayesian learning algorithm used in this method has a linear computational complexity, and it is able to infer the structure of the model in addition to estimating t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004